USER GUIDE FOR SMART VORTEX FLOW METER SVF128

SVF128-MN-EN-01  

MAY-2021

This document is applied for the following products

SKU SVF128

1. Functions Change Log

HW Ver.

 

FW Ver.

Release Date

Function Change

1.0

1.0

MAY-2021  

2. Introduction

SVF128 Vortex flow meter is a smart vortex flow meter utilizing “Karman vortex” theory to measure the velocity of fluid then calculate the flow rate in volume or mass. VFM128 is to use for various fluids such as gas, steam and liquid. The flow meter come with local or remote display and different type output such as 4-20mA, pulse, RS485 ModbusRTU, Hart for easily integrate into any PLC, SCADA, DCS system. The flow meter can be upgraded with latest wireless connectivity such as Sub-GHz, LoRaWAN, Sigfox, NB-IoT, 3G/4G... allow it to connect to any IoT platform such as Globiots, Azure, AWS...

Typical Applications: Saturated Steam, Super-heated Steam, Compressed Air, Liquid, Industrial Gases: Nitrogen, Oxygen... or Fuel Gas: Natural Gas...

SVF128-H1.png

3. Specification

Process Fluids Liquid, Gas, Steam, Compressed Air
Process connection Flange or Wafer for size DN15~DN300 or 0.5 inch to 12 inch
Local Display Standard integral LCD display. Optional Remote display with 10m cable
Measurable Parameters of standard version Volumetric flow rates and totalizer, velocity.
Measurable Parameters of Multi-variables version Mass flow rate, volumetric flow rate, temperature, pressure, velocity.
Output Pulse, 4~20mA (HART V5, V7 @4~20mA), ModBus-RTU RS485
Process Pressure 1.6MPa (232 psiG),2.5MPa (362 psiG),4.0MPa (580 psiG),6.3Mpa (913 psiG) for option
Process Temperature Standard type: -40 ~ 150 °C or -40 ~ 302 °F
Medium type: -40 ~ 250 °C or -40 ~ 482 °F
High temperature type: -40 ~ 350 °C or -40 ~ 662 °F
Gas flow Turndown DN15, DN20: Turndown ratio 10:1
DN25, DN32: Turndown ratio 15:1
DN40~DN300: Turndown ratio 30:1
Steam flow Turndown DN15, DN20: Turndown ratio 11.6:1
DN25, DN32: Turndown ratio 17.5:1
DN40~DN300: Turndown ratio 35:1
Liquid flow Turndown 23:1
Accuracy Gas/Steam: ±1%RD(Re ≥ 20000), ±2%RD(10000 ‹ Re ‹ 20000)
Liquid: ±0.75%RD(Re ≥ 20000), ±2%RD(10000 ‹ Re ‹ 20000)
Repeatability ±0.3% of flow reading, ±0.05 °C for temperature, ±0.05%FS of pressure
Upstream/Downstream required 15D / 5D
Viscosity allowance DN15 or 0.5 inch ≤ 4mPas
DN25 or 1 inch ≤ 5mPas
DN40~DN300 or 1.5~12 inch ≤ 7mPas
Anti-vibration (both punch and fixed freq) 0.5g
Power Supply 15.5 .. 42 VDC

4. Measuring principle

Vortex flowmeter measures the flow by sensing the vortices in the flow according to “Karman Vortex Street”. When put an shedder in the path of flow, vortices are alternately shed on each side (see picture 4.1)

SVF128-H9.png

Picture 4.1: Von Karman Vortex

The frequency of vortices (f) is in direct ratio with velocity of flow (v) and in inverse ratio with width of obstacle (d).

f=St*v/d (formula 1)

v=fd/St (formula 2)

St is Strouhal Number, is a dimensionless constant related to shape of the shedder, which can be get by testing. St is Strouhal Number, is a dimensionless constant related to shape of the shedder, which can be get by test.

Because d and St is constant, flow velocity (v) and average velocity (v0) also have certain relationship ( v0=v/(1-1.25d/D) ), so, you could get v0 by having the frequency of vortices shedding (f) , and then get the mass flow. The ration between quantity of vortex in a certain period of time and the volume of the flow pass by is called coefficient of the instrument (K)

K=N/V (formula 3)

VFM60 series digital vortex flowmeter is designed to provide most reliable performance. This series of vortex flowmeter is designed on Comate Intelligent Sensor PA60 platform .Every parts utilized is universal for all VFM60 series products. The circuit boards use signal isolation and self-diagnose technology. VFM60 series utilize spectrum analyzing signal process technology, which ensured lower under measuring limit and better turndown ratio. The enhanced version use unique dual-sensor design and vibration signal analyzing technology to improve its anti-vibration capability and provide with more stable reading. VFM60 also has density calculation function as option, which means it can calculate the density and measure mass flow rate of air / saturated steam/superheated steam without secondary device. It also has AGA-NX-19 and AGA-8 algorithm to measure natural gas directly.

5. Installation

5.1  Find Most Suitable Location

(1) Ambient temperature

Please avoid installing the flowmeter at a location where temperature could dramatical changes. If the meter is under heavy heat radiation , please implement effective heat insulation and venting method.

(2) Atmosphere

Please do not install the meter at a location where the atmosphere contains a high level of corrosive substance. If can not install the meter at a better location, please make sure there is enough venting.

(3) Vibration

The meter should not be installed at a location where could have strong vibration. If the mounting pipeline could has heavy vibration, the pipe line should be hold steady by some support racks.

(4) Caution

  • All screws and bolts should be tighten.
  • Make sure there is not leakage point on the connection.
  • The process pressure should not be higher than the meter’s rated pressure.
  • Once the meter is under pressure, please do not screw the bolts and screws.

5.2 Requirement on straight pipe line

SVF128-H11.pngSVF128-H11.png

6. Wiring

VFM60 vortex flowmeter has 2 different terminal boards, the 5-terminals board and the 12 terminals board, please reference to picture 6.1 and 6.2 below.

SVF128-H12.png

Picture 6.1: 5-terminals board

SVF128-H13.png

Picture 6.2: 12-terminals board

On above boards, V+ and V- are for power. image-1621562443732.pngis pulse output terminal. A, B are “+” and “-” for RS485Modbus communication, I+ and I- are + and – for 3-wire or 4-wire 4~20 mA.RT1, RT2, RT3 are for separate RTD. P+,P- are for pressure transmitter . VFM60 multi –variable version has built in RTD and pressure sensor, so clients are not required to wire for temperature or pressure compensation.

6.1 Wiring for 5-terminal board

6.1.1 Wiring for 3 wire pulse output

3-wire pulse output require a power source of 13.5~42VDC. VFM use a current pulse output with 50% duty ratio. If the pulse receiving instrument require voltage pulse, please add a resistor between “Pulse.png” and “V-”, the resistance should be within 500ohms~1000ohms, and power consumption should be no less than 0.5W.

Please reference to picture 6.3 picture below for 3-wire pulse output wiring.

SVF128-H14.png

Picture 6.3: 3-wire pulse output wiring

6.1.2 Wiring for 2 wire HART@4~20mA

When there is not temperate and pressure compensation and the power source is 24VDC, the max load for 4~20mA analog is 500ohms. And when there is temperate and pressure compensation and the power source is 24VDC, the max load for 4~20mA analog is 400ohms. When using a HART communicator, please add a 250ohms load resistor

SVF128-H15.png

Picture 6.4: Wiring for 2 wire HART@4~20mA

6.1.3 Wiring for RS485

SVF128-H16.png

Picture 6.5: Wiring for RS485

6.2 Wiring for 12-terminal board

6.2.1 Wiring for 3 wire pulse output

3-wire pulse output require a power source of 13.5~42VDC. VFM use a current pulse output with 50% duty ratio. If the pulse receiving instrument require voltage pulse, please add a resistor between "Pulse.png" and “V-”, the resistance should be within 500Ω ~1000Ω, and power consumption should be no less than 0.5W.

SVF128-H17.png

Picture 6.6: 3-wire pulse output wiring

6.2.2 Wiring for 4 wire 4~20mA

SVF128-H18.png

Picture 6.7: Wiring for 4-wire 4~20mA

6.2.3 Wiring for 4 wire HART@4~20mA

When power source is 24VDC, the max load for 4~20mA analog is 500Ω.

SVF128-H19.png

Picture 6.8: Wiring for 4-wire HART@4~20mA

SVF128-H20.png

Picture 6.9: Wiring for RS485

6.3 Shell grounding and elimination of interference

In VFM60 digital vortex flowmeter the power supply of signal processing circuit is transferred from outside power supply by a isolation type DC-DC transmitter with advanced grounding technology. The field frequency interference can be isolated well.

When using this product, the “V-” of power supplier should not be connected with the ground. When this product is used in a environment with strong interference , the shell should be connect with earth through cable , so the interference can be eliminated.

6.4 Requirement on wiring

  1. Please conduct wiring when the power is on in a explosive environment.
  2. Please open the rear cover first, then inert the cable into back zone of housing through the water-proof cable gland.
  3. Conduct wiring according to 6.1 and 6.2.
  4. If possible, please conduct the wiring according to picture 6.10 to avoid the water get into the housing through the cable.

SVF128-H21.png

Picture 6.10: Introduction for wiring

7. Display

VFM60 digital vortex flowmeter provide local display and setting, can display several variables on the local multi-functional LCD display. The convertor also have 3 button so clients can do setting on it.

7.1 Instruction of multi-functional LCD display

VFM60 digital vortex flowmeter has a display to indicate “Frequency” “Flow rate” “Total flow”. The VFM60 multi-variable version or a standard VFM60 working with RTD and pressure transmitter can also indicate other variables such as “Temperature” “Pressure” “Density” “Mass flow” etc. Please reference to picture 7.1 below.

SVF128-H22.png

Picture 7.1: LCD display

The LCD display has 2 areas to display the content, the upper row, the lower row. The upper row displays the flow rate/mass flow/standard flow rate. Below the upper row shows the unit of the variable displayed in upper row.

The lower row display indicates other variables, such as frequency/ pressure/ temperature/ density/total flow/ velocity. And below the lower row shows the unit of the variable displayed in lower row.

Please reference to picture 7.2 for display

SVF128-H23.png

Picture 7.2: Flow rate and total flow

VFM60 multi-variable version or normal version with temperature and pressure compensation, can calculate and display the mass flow of steam, both saturated steam and superheated steam. Please reference to picture 7.3 for mass flow rate displaying.

SVF128-H24.png

Picture 7.3: Mass flow and total flow of steam displaying

VFM60 multi-variable version or normal version with temperature and pressure compensation can display variables such as temperature/ pressure/ density. Use the switch button to switch to next variable and it will display for 30 seconds.

Please reference to picture 7.4 as a sample of temperature displaying. You can also keep the lower row consistently display a variable by setting. The default variable displayed in lower row is total flow.

SVF128-H25.png

Picture 7.4: Lower row is displaying temperature

You can also set the lower row to display several variables in circular turn.

7.2 Unit of the variable displayed

The variables that can be displayed in lower row and their units that can be displayed are as the chart 7.1 below.

Subject Variable Unit Circular display code
TOTAL Total flow Nm3, m3, L, kg or t 01
TEMP

Temperature

 ℃

02

PRES

 Pressure

 MPa or kPa

03

FREQ

 Frequency

Hz

04

DENS

 Density

 kg/ m3

05

Chart 7.1: The displayed units

VFM60 series digital vortex flowmeter has three buttons on the top of the displayer, which are:

[↔] will be mentioned as “L-R button” below
[↕] will be mentioned as “U-D button” below
[↲] will be mentioned as “Enter button” below)

Please reference to below picture

SVF128-H26.png

Picture 7.5: Buttons

When under working, use “U-D button” to switch the displaying content, use “L-R button” can switch to the left and right digits of total flow. “Enter button” is to display the entire digits of total flow directly.

When the flowmeter is under setting mold, the “L-R button” means move to left and right to select the digit, the “U-D button” means to set the digit to a number, the “Enter button” means “confirm”. All the “Digital setting” and “Code setting” of VFM series vortex flowmeter is made through these 3 buttons.

Please reference to related article for details.

7.4 Total flow displaying

VFM60 can display 9 digits left to decimal point and 3 digits right to it. When the there is more than six digits, the total flow reading will be displayed in two times. One time displays the right digits and the other displays the left digits. You can use the “L-R button” to switch between the right digits and left digits. The left digits will be displayed with a mark of “x1000”.

Please reference to picture 7.6

SVF128-H27.png

Picture 7.6: Displaying the left digits, a “x1000” mark is displayed

If you want to check the right digits now, please pressure the “L-R button” , the display will be as picture 7.7 below.

SVF128-H28.png

Picture 7.7: Displaying the right digits

According to picture 7.6 and 7.7, the total flow is 569864.581 kg.

7.5 Status

VFM60 series vortex flowmeter have three different statuses as below

  • Working status
  • Setting status
  • Calibration status

When under working status, please follow the instruction in 7.1 to switch the parameter displayed.

When under setting status, you can set the flowmeter, while the flowmeter is still processing, so setting will not have effect on the measuring. In next chapter, there will be instruction of how to do setting.

The calibration of the flowmeter has been finished in manufacture’s lab before delivery, including temperature and pressure calibration and the setting of high-limit and low-limit of 4~20mA simulation output. Thus, customers don't need to do anything.

8. Setting

Note: Every VFM60 digital vortex flowmeters has been set according to requirement before delivery, please do not change setting unless it is necessary and under correct instruction!

VFM60 series digital vortex flowmeter have digital setting and code setting. Use code setting to set parameters such as fluid type, compensation type and output signal. Use digital setting to set parameters related to a number, such as pipe size, flow range, factor.

8.1 How to set

8.1.1 Code setting

Under working status, to enter code setting, please hold “Enter button” then press “U-D button” at the same time. Please reference to picture 8.1.

SVF128-H29.png

Picture 8.1: Enter and quit code setting

When in code setting, the first row will display the reference number of the code setting, and the lower row will display the contents of this parameter. The digit that is flashing is the digit under setting. Please reference to picture 8.2, which means C01=02, means fluid type is liquid.

SVF128-H30.png

Picture 8.2 Code setting

When under code setting, Now ,user can use “L-R button” to choose which digit on the displayer are to be set , and use “R-D button” to switch the digit to 0~9 . The first time of pressing “Enter button” means to set the lower row. Press “Enter button” again to check if the setting is available. If setting is available, the setting made will be canceled and the display will not flash, then press “L-R button” or “U-D button” to set again. When display is not flashing, pressure “Enter button” to save and go to next setting.

If want to quit code setting, same as entering, please hold “Enter button” then press “U-D button” at the same time.

8.1.2 Digital setting

Under working status, to enter code setting, please hold “Enter button” then press “L-R button” at the
same time. Please reference to picture 8.3.

SVF128-H31.png

Picture 8.3: Enter or quit digital setting

When in digital setting, the first row will display the reference number of the digital setting, and the lower row will display the contents of this parameter. The digit that is flashing is the digit under setting. Please reference to picture 8.4, which means D001=1.60000, max pressure is 1.6 (unit according to other setting.)

SVF128-H32.png

Picture 8.4: Digital setting

When under digital setting, Now, user can use “L-R button” to choose which digit on the displayer are to be set , and use “R-D button” to switch the digit to 0~9 . The first time of pressing “Enter button” means to set the lower row. Press “Enter button” again to check if the setting is available. If setting is available, the setting made will be canceled and the display will not flash, then press “L-R button” or “U-D button” to set again. When display is not flashing, pressure “Enter button” to save and go to next setting.

If want to quit code setting, same as entering, please hold “Enter button” then press “U-D button” at the same time.

8.2 Setting list

Please check chart 8.1 and 8.2 for code and digital setting address list.

Chart 8.1: Code setting address

Code setting address

 Item

 Code

Description of code

01

 Fluid

00

Steam

01

Gas

02

Liquid

02

 Density compensation

00

Volume flow display, no density compensation

01

Density preset

02

Pressure  compensation  (for  saturated  steam pressure not larger than 20Mpa

03

Temperature compensation (For  saturated steam)

04

Temperature and pressure compensation (For superheated steam)

05

ρ=A+BP (Pressure compensation)

06

ρ=A+BT (Temperature compensation)

07

AGA-NX-19   to   calculate   compressibility factor

08

Temperature  and  pressure  compensation  to get normal condition flow rate of gas

09

AGA-8 to calculate compressibility factor

10

Air compressor output flow analysis

05

Output

01

Pulse (Please reference to D008 for K factor)

02

4~20mA or HART@4~20mA

03

200-1000HZ  frequency  output,  set  what  to output in C06

04

frequency output for total flow, set factor in D013

06

4~20mA   or 4~20mA@HART or 200-1000Hz output parameter

00

Flow rate

01

Temperature

02

Pressure

07

Damping

01~99

1~99 seconds

08

Instrument number

00~99

For Modbus

00~15

For Modbus or HART communication

09

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baud rate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

01

1200 no parity 1 stop bit

02

1200 even parity   1 stop bit

03

2400 no parity 1 stop bit

04

2400 even parity   1 stop bit

05

4800 no parity 1 stop bit

06

4800 even parity   1 stop bit

07

9600 no parity 1 stop bit

08

9600 even parity   1 stop bit

09

19200 no parity 1 stop bit

10

19200 even parity   1 stop bit

11

1200 odd parity   1 stop bit

12

 

13

2400 odd parity   1 stop bit

 

4800 odd parity   1 stop bit

14

9600 odd parity   1 stop bit

15

19200 odd parity   1 stop bit

16

38400 no parity 1 stop bit

17

38400 even parity   1 stop bit

18

38400 odd parity   1 stop bit

19

57600 no parity 1 stop bit

20

57600 even parity   1 stop bit

21

57600 odd parity   1 stop bit

22

115200 no parity 1 stop bit

23

115200 even parity    1 stop bit

24

115200 odd parity    1 stop bit

10

 

 

Time unit for flow rate

 

 

00

/s

01

 

02

/min

 

/h

03

/day

11

 

Mass unit

 

01

kg

02

ton

03

lb

12

 

 

Volume unit for flow rate

 

 

01

m3

02

L

03

ft3

04

US gal

05

UK gal

13

 

Pressure unit

 

01

Mpa

02

Kpa

03

Psi

14 

Temperature unit

 

 

01 ℃ 

02

℉  

03

K   
15

Right digits number for total flow

 

00~05

 

00:No right digits for total flow 

01~05:1~5 right digits for total flow

16

1st row display parameter

 

01

Flow rate

02

Percentage of flow rate to flow range

17 

lower row display parameter

 

 

 

 

 

00

No display

01 

Total flow

02 

Temperature

03 

Pressure

04 

Density

05

Frequency
18

Density unit

 

01

Kg/m3

02

lb/ft3

19

Decimal of flow rate

00~04

00: No right digits for flow rate

01~04: 1~4 right digits for flow rate

20  Decimal of temperature 00~04

00: No right digits for temperature

01~04: 1~4 right digits for flow rate

21  Decimal of pressure 00~04

00: No right digits for pressure

01~04: 1~4 right digits for pressure

30  Time space for circle display 00~30 00:circle display off
1~30:1~30 seconds between the display of different parameter
31 First parameter displayed in circle display 00~05

00:circle display off

01~05:see chart 7.1

 ⫶  ⫶  ⫶  ….
35 Last parameter displayed in circle display 00~05 Same as above
38 Sequence of float (under RS485 communication) 01 LL_LH_HL_HH
02 HH_HL_LH_LL
03 LH_LL_HH_HL
04 HL_HH_LL_LH
47  Password function 00 off
01 on
48  Set password 00 Keep the password
01 Change the password
49  Spectrum analyzing checking 00 Working status
12 spectrum analyzing checking
50 Total flow reset 00 Reset total flow to 0
01 Default
55  Times of over total flow 00~99 For reading only
60  Restore to backup date 06 Restore to backup date
61 Save setting backup 16 Save current setting for backup
  1. Note:
  2. If the unit of flow rate is changed or measurement changed from flow rate to mass flow, users can reset the total flow to 0 or record the current total flow.
  3. Total flow=(time of over total flow)* (max display of total flow)+(current total flow reading)

Chart 8.2: Digits setting address

Digital setting address

 Item

 Code

 Description of code

001

Max pressure

[-99999,999999]

Max input/output pressure

002

Min pressure

[-99999,999999]

Min input/output pressure

003

Max temperature

[-99999,999999]

Max input/output temperature

004

Min temperature

[-99999,999999]

Min input/output temperature

 005

Preset density

(0,999999]

 When C02=01, the meter will use this density, unit according to setting

 008

K factor

(0,999999]

K factor according to calibration result, unit is pulses/Liter.

Flow=3.6*freq/K

009

Max flow rate

(0,999999]

unit is same as flow rate, Max/min flow rate of 4~20mA and 200~1000Hz output

010

Min flow rate

[0,999999]

011

Max frequency

[0,999999]

Up-limit of frequency (Hz) output

 012

 Min frequency

 [0,999999]

Down-limit of frequency (Hz)

output

013

pulse factor for total flow

(0,999999]

 used when freq output of total flow

014

Ambient pressure

(0,999999]

Unit according to setting

015

Pipe size

(0,999999]

unit is mm

021

Cut off small signal

[0,999999]

unit is Hz

 022

 Standard temperature

 [0,999999]

unit is  °C; for standard flow rate calculation

 023

Temperature of air compressor inlet

 [-40,999999]

Unit is  °C, for air compressor flow outlet analysis

024

Pressure of air compressor inlet

 (0,999999]

Unit is Mpa, for air compressor flow outlet analysis

025

Temperature preset

[-99999,999999]

Unit is  °C

 026

Resonance frequency starting frequency

 (0,999999]

For high speed steam measure use

027

Resonance frequency ending frequency

(0,999999]

For high speed steam measure use

 030

Relative density of compressibility factor

[0.55,0.90]

For calculation of compressibility factor of natural gas

 031

 mol% of N2 and H2

 [0,0.1]

For calculation of compressibility factor of natural gas, eg.if 1%, please input 0.01

 032

mol% of CO2

 [0,0.3]

For calculation of compressibility factor of natural gas, eg.if 1%, please input 0.01

 033

Higher heating value

[20,48]

MJ/mol, For calculation of compressibility factor of natural gas

Note: Max freq output=10KHz, the pulse factor for total flow should be set properly set according to the current total flow.

8.3 Example of setting

Sample: For vortex flowmeter VFM60, measure gas in DN50 pipe, K factor= 7.802P/L, density preset, mass flow display unit is kg/h. 4~20mA output with a flow range of 0~4000kg/hr

 Code setting

Address

Code

Description

01

01

gas

02

01

Density preset

05

02

4~20mA analog output

 Digital setting

005

2.0000

Density=2

008

7.802

K factor=7.802 P/L

009

4000

Flow rate of 20mA

010

0

Flow rate of 4mA

015

50

Pipe size=50mm

8.4 Password setting instruction

There is no password set in default in a new VFM60 digital vortex flowmeter ,users can set a password following instruction below.

Enter code setting, set C47=01, confirm and quit then enter the password setting interface as picture 8.5

SVF128-H33.png

Picture 8.5: Password setting interface

To set a new password, users have to input the correct password twice, the password will become effective only if the both inputs are the same; or users have to input again. If the power is off during a password setting process, the password will be 2000 as default. When a password becomes effective, users have to input the correct password before he can set the flowmeter, please reference to picture 8.6.

If users input incorrect password 3 times consistently, the display will come back to normal display

SVF128-H34.png

Picture 8.6: Password input

If a password has been set to a VFM60 vortex flowmeter, users can enter code setting C48=01 to set a new password.

9. Instruction of Modbus Communication

9.1 Interface regulation

  • The communication interface should be RS485, the range of Baud rate should be 1200~115200.
  • The wiring terminal is “A” and “B”.
  • The communication should comply with MODBUS-RTU statute.
  • The combination of a communication signal: Address code - function code – date segment – CRC calibration code. The distance between two characters should not be longer than one character, or it will be considered as the beginning of a new message or the end of a old message. The message is combined with hexadecimal arrays.
  • Definition of the dates: Please reference to the chart 9.1 below.

Chart 9.1: Address of the displayed date

Register address

Usage

Nature

Date type

0~1

Flow rate

Read only

Float

2~3

Frequency

Read only

Float

4~5

Reserved

Read only

Float

6~7

Pressure

Read only

Float

8~9

Temperature

Read only

Float

10~11

Density

Read only

Float

12~13

Reserved

Read only

Float

14~15

Reserved

Read only

Float

16~17

Reserved

Read only

Float

18~19

Reserved

Read only

Float

20~21

Reserved

Read only

Float

22~23

Reserved

Read only

Float

24~25

Total flow

Read only

Float

The displayable date including flow rate, frequency, pressure, temperature, density and total flow, if the meter do not have density compensation, then the reading of pressure and temperature will both be 0. The date of the parameters in above chart can be read by using function code 03 according to the address above and shifting.

The addresses of code setting are as below.

Chart 9.2: Address of code setting

Register

Usage

Range

Nature

Date type

1000

Fluid type C01

1~2

Read only

Short

1001

Density compensation C02

0~9

Read/Write

Short

1004

Output C05

1~4

Read/Write

Short

1005

200-1000Hz output parameter C06

1~3

Read/Write

Short

1006

Damping C07

1~99

Read/Write

Short

1007

Instrument number C08

Hart(0~15) MB(1~99)

Read

Short

1008

Baud rate C09

1~24

Read

Short

1009

Unit of time C10

0~2

Read/Write

Short

1010

Mass unit C11

1~3

Read/Write

Short

1011

Volume unit C12

1~5

Read/Write

Short

1012

Pressure unit C13

1~4

Read/Write

Short

1013

Temperature unit C14

1~3

Read/Write

Short

1014

Right digits number for total flow    C15

0~5

Read/Write

Short

1015

1st row display parameter C16

1~2

Read/Write

Short

1016

lower row display parameter C17

0~5

Read/Write

Short

1017

Density unit C18

1~2

Read/Write

Short

1029

Time space for circle display C30

0~30

Read/Write

Short

1030

First parameter displayed in circle display C31

0~5

Read/Write

Short

1031

Second parameter displayed in circle display

C32

0~5

Read/Write

Short

1032

Third parameter displayed in circle display C33

0~5

Read/Write

Short

1033

Fourth parameter displayed  in  circle  display

C34

0~5

Read/Write

Short

1034

fifth parameter displayed in circle display C35

0~5

Read/Write

Short

1035

C36

0~1

Read/Write

Short

1036

C37

0~10

Read/Write

Short

1037

Sequence of float    C38

1~4

Read/Write

Short

1046

Password function C47

0~1

Read

Short

1047

Set password C48

0~1

Read

Short

1048

Spectrum analyzing checking C49

0~12

Read/Write

Short

1049

Total flow reset to 0 C50

0~1

Read/Write

Short

1050

C51

0~0

Read/Write

Short

1051

C52

0~99

Read/Write

Short

1052

C53

0~0

Read/Write

Short

1053

C54

0~0

Read/Write

Short

1054

Times of over total flow C55

0~0

Read only

Short

1059

Restore to backup date C60

0~99

Read/Write

Short

1060

Save setting backup C61

0~99

Read/Write

Short

Users can use function code 04 and 06 to access to the address for code setting above.

Digital setting address is as below.

Chart 9.3: Address of digital setting

Register

Usage

Restriction of modification

Nature

Date type

2000~2001

D001 Max pressure

-1e5~1e6

Read/Write

Float

2002~2003

D002 Min pressure

-1e5~1e6

Read/Write

Float

2004~2005

D003 Max temperature

-1e5~1e6

Read/Write

Float

2006~2007

D004 Min temperature

-1e5~1e6

Read/Write

Float

2008~2009

D005 Density

0~1e6

Read/Write

Float

2014~2015

D008 K factor

0~1e6

Read/Write

Float

2016~2017

D009 Max flow rate

0~1e6

Read/Write

Float

2018~2019

D010 Min flow rate

0~1e6

Read/Write

Float

2024~2025

D013 Factor for total flow output

0~1e6

Read/Write

Float

2026~2027

D014 Ambient pressure

0~1e6

Read/Write

Float

2028~2029

D015 Pipe size

0~1e6

Read/Write

Float

2040~2041

D021 Cut off small signal

0~1e6

Read/Write

Float

2058~2059

D030 Specific density

[0.55,0.90]

Read/Write

Float

2060~2061

D031 mol% of N2 and H2

[0,0.1]

Read/Write

Float

2062~2063

D032 mol% of CO2

[0,0.3]

Read/Write

Float

2064~2065

D033 Higher heating value

[20,48]

Read/Write

float

The chart above indicates the register address, usage of the register, restriction of modification, read/write nature and date type. The register above are all holding register, the supporting function code is 03,04,06,16 function code.

9.2 Commends

Function code 03 and 04 are the codes supported for reading the registers. Function code 06 is for writing one register. Function code 16 is for writing multi registers. Function code 06 is only supported for writing short date. Function code 16 is supported for writing both short date and float date.

Function code 03 – Read register

Request

Response

01 : Address

01: Address

03 : Function code

03 : Function code

00 : Register address higher

04 : Quantity of bit

00 : Register address lower (display the address)

80 : Date 1

00 : Register number higher

04 : Date 2

02 : Register number lower

80 : Date 3

CRCL : CRC Parity code lower

80 : Date 4

CRCH  :CRC parity code higher

CRCL : CRC Parity code lower

 

CRCH  :CRC parity code higher

Note: To read a float date, the quantity of the register address and its value have to be even, or response will be error.

Function code 04 – Same as function code 03

Function code 06 – write one register

Request

Response

01 : Address

01: Address

06 : Function code

06 : Function code

00 : Register address higher

00 : Register address higher

01 : Register address lower (code setting address)

01 : Register address lower

00 : Value higher

00 : Value higher

04 : Value lower

04 : Value lower

CRCH  :CRC parity code higher

CRCH  :CRC parity code higher

CRCL : CRC Parity code lower

CRCL : CRC Parity code lower

Note: Function code is only supported for writing short dater.

Function code 16- write multi register.

Request

Response

01 : Address

01: Address

10H : Function code

10H : Function code

00 : Register address higher

00 : Register address higher

01 : Register address lower (digital setting address)

01 : Register address lower

00 : Quantity of register higher

00 : Quantity of register higher

02 : Quantity of register lower

02 : Quantity of register lower

04 : Quantity of values

CRCH  :CRC parity code higher

86h : Value 1

CRCL : CRC Parity code lower

00 : Value 2

 

00 : Value 3

 

48H:   Value 4

 

CRCH  :CRC parity code higher

 

CRCL : CRC Parity code lower

 

Note: Function code 16 is supported to write both short date and float date. But for float date, the first register address and the quantity of the registers must be even, or writing is not allowed.

9.3 Calculation of CRC parity code

Request

Response

01 : Address

N1 CRC=0FFFFH is initial value

10 : Function code

N2 XOR operation the CRCL and N1

00 : Register address higher

N3 CRC move 1 bit right , if move out is 1 bit

01 : Register address lower

N4 CRC=CRC XOR A001H

00 : Register quantity higher

N5 if move out is 0 , CRC=CRC

04 : Register quantity lower

N6 Move right for 8 times to finish the N1 calculation

04 : Date quantity

N7 …

80 : Date 1

N8 XOR operation the CRCL and N11

04 : Date 2

N9 CRC move 1 bit right , if move out is 1 bit

80 : Date 3

N10 CRC=CRC XOR A001H

80 : Date 4

N11 if move out is 0 , CRC=CRC

CRCL : CRC Parity code lower

Move right for 8 times to finish the N11 calculation

CRCH  :CRC Parity code higher

Get the CRC calibration value

9.4 The float date format of the instrument

The storage sequence of 4 bits float format is as below:

Address 0 1 2 3
Content MMMMMMMM MMMMMMMM EMMMMMMM

SEEEEEEEE

Use IEEE standard method, do not store 1 on top digit, if top digit is 1, means negative; if top digit is 0, means positive. So the 23 mantissas and a 1 on top digit, which is concealed, constitute a 24 bits fixed point true form decimal, which is a decimal have mantissas less than 1 and more than or equal to 0.5. The lowest 8 bits are exponent-marker using shift code method. The exponent marker equals to the actual value minus 127. For example: 7=86H-7FH, -10=75H-7FH

e.g.:   100=0x00,0x00,0x42,0xc8

-100=0x00,0x00, 0xc2,0xc8

0=0x00.0x00.0x00.0x00 (exponent-marker is 0, the number is 0)

9.5 The sequence of the float date bytes of instrument

Code setting C38 is used for setting the sequence of the float date bytes of instrument. Float date will occupy 4 bytes (2 registers). To set the bytes order of float date, please modify register :

1: LL_LH_HL_HH the lower 16 bytes registers come first, the lower 8 bytes within the 16 bytes registers come first.

eg:  100=0x00,0x00, 0xc8, 0x42

       -100=0x00,0x00,0xc8,0xc2
2: HH_HL_LH_LL the higher 16 bytes registers come first, the higher 8 bytes within the 16 bytes registers come first.
eg:  100=0x42,0xc8,0x00,0x00
       -100=0xc2,0xc8 ,0x00,0x00
3: LH_LL_HH_HL the lower 16 bytes registers come first, the higher 8 bytes within the 16 bytes registers come first.
eg:  100=0x00,0x00,0x42,0xc8
      -100=0x00,0x00,0xc2,0xc8
4: HL_HH_LL_LH the higher 16 bytes registers come first, the lower 8 bytes within the 16 bytes registers come first.
eg:  100=0xc8,0x42,0x00,0x00
      -100=0xc8,0xc2,0x00,0x00

9.6 Modbus error response

When the host sends a command and asks for a correct response, one of below three is going to happen:

1) If the command from the host is correct and processable, the flow meter will give a correct response.

2) If the flowmeter received a command, but detected parity, the error of LRC and CRC will cause no response. The host will process a overtime commend.

3) If the flowmeter received a correct command, but can not process it (read or write a none-existing register etc.), the flowmeter will send a error response

A error response has two byte sections to show its difference from a correct response.

Function code section: In a correct response, the flowmeter will copy the origin function code sent from the host, and the highest bytes of them are all 0(all function codes are smaller than 0x80). In a error response, the flowmeter will set the highest bytes to 1. The host can detect the error code and know the content of the error when it detect that the highest bytes of function codes are 1.

Value section: In a error response, the flowmeter will reply a byte as the error code to definite the content of the error. Please reference to the chart below for the error codes and its definition: 

Code

Name

Meaning

01

Illegal   function code

Flowmeter can not process the function code in a command.   Maybe this function code can only be used on a new device, or it can also

indicate that the flowmeter is under error statues.

02

Illegal address

The flowmeter can not process with the address in the command. The initiate  address  plus  address  diversion  are  higher  than  the  highest

address.

03

Illegal   contents

of value

The content of the value in the command is not acceptable for the

flowmeter.

04

Flow         meter

function failed

An unrecoverable failure happened when the flowmeter is trying to

response.

05

Response

The flow meter will take a long while to process the command. So response this error code to prevent the host from   processing a overtime

command.

06

Flowmeter      is busy

To advise the host that the flowmeter is processing a command which will takes a long time. So the host should resend the command when the

flowmeter is free.

9.7 Examples of communication

The flowmeter’s instrument Modbus address is 01, baud rate=4800 (C08=01, C09=05, C38=02).

Example 1: Read flow rate F,F=916.49 (4 bytes float)

Host command: 01 03 00 00 00 02 C4 0B

Flowmeter response: 01 03 04 44 65 1F CE 77 78

Example 2: Read total flow

Host command: 01 03 00 24 00 02 84 00

Flowmeter reponse:01 03 04 44 9D 1E 3F 36 9D

Example 3: Read all the value displayed on the flowmeter, including flow rate, frequency, pressure, temperature, density, total flow ….. all together 13 value (52 bytes)

Host command: 01 03 00 00 00 1A c4 01

  • 44 65 1F CE(flow rate=916.49)
  • 42 48 00 00(frequency=50)
  • 00 00 00 00(reserved=0)
  • 00 00 00 00(pressure=0)
  • 00 00 00 00(temperature=0)
  • 3F 80 00 00(density=1.00)
  • 00 00 00 00(reserved=0)
  • 00 00 00 00(reserved)
  • 00 00 00 00(reserved)
  • 00 00 00 00(reserved)
  • 00 00 04 E8(reserved=1256)
  • 00 00 00 00(reserved=0)
  • 44 9D 1E 3F(total flow in float=1256.94)
  • 5A (CRCL)
  • 91 (CRCH)

10. Introduction of HART communication protocol

10.1 HART commands

10.1.1 Command 0: Read transmitter unique identifier

Command format
Return to the expansion device type code, version number and identification number

Request: None

Response:

Byte 0: 254

Byte 1: Manufacture’s ID

Byte 2: Manufacture’s device type

Byte 3: Number of request preambles

Byte 4: Revision level of universal command

Byte 5: Revision level of transmitter document

Byte 6: Software revision level

Byte 7: Hardware revision level

Byte 8: Flags, none defined at this time

Byte 9-11: Device Identification Number

Test of command

Send 0 command: FF FF FF FF FF 02 80 00 00 82; to request information of the instrument

Receive 0 command: FF FF FF FF FF 06 80 00 0E 00 00 FE 1A 1A 05 05 00 00 00 00 AD 18 8C 4F

10.1.2 Command 1: Read primary variable value (PV)

Command format:

Return to primary variable value in float.

Request: None

Response:

Byte 0: Primary variable unit code

Byte 1-4: Primary variable

Remark: The unit code is 75:kg/hour, 19:m3/hour.

Set primary command to flow rate.

Test of command:

Send command 1: FF FF FF FF FF 82 9A 1A AD 18 8C 01 00 3A ;to read the IEEE754 float value of primary variable.

Receive command 1:FF FF FF FF FF 86 9A 1A AD 18 8C 01 07 00 00 13 00 00 00 00 2A

10.1.3 Command 2: Read primary variable’s current and percentage value

Command format:

Read the current and percent of the primary variable, the current of primary variable always match the AO current output of the instrument. Percent is not restricted within 0~100%, if it is beyond the limit of primary variable, it will find the limit of the transmitter.

Request: None

Response:

Byte 0-3: Analog output current mA, IEEE754

Byte 4-7: Percent of range , IEEE 754.

Test of command:

Send command 2: FF FF FF FF FF 82 9A 1A AD 18 8C 02 00 39 ; to read the current and primary variable percent of range.

Receive command 2: FF FF FF FF FF 86 9A 1A AD 18 8C 02 0A 00 00 40 80 00 00 00 00 00 00 F7

10.1.4 Command 3: Read primary variable current and dynamic variables

Command format:

Read the current of primary variable and 4 preset dynamic variables at maximum. The current of primary variable always match the AO output current of the instrument. Every type of device has a definition on a relative dynamic variable, for example the secondary variable is temperature sensor.

Request: None

Response:

Byte 0-3: Analog output current mA, IEEE 754

Byte 4: Primary variable unit code

Byte 5-8: Primary variable, IEEE 754

Byte 9: Secondary variable unit code

Byte 10-13: Secondary variable, IEEE 754

Byte 14: Tertiary variable unit code

Byte 15-18: Tertiary variable, IEEE 754

Byte 19: Quaternary variable unit code

Byte 20-23: Quaternary variable, IEEE 754

Remark: Primary variable is flow rate. The unit code is 75:kg/hour, 19:m3/hour;

Secondary variable is total flow. The unit code is 61:kg, 43:m3;

Tertiary variable is frequency. The unit is Hz;

Quaternary variable is temperature. The unit is 32: ℃;

Test of command:

Send command 3: FF FF FF FF FF 82 9A 1A AD 18 8C 03 00 38; to read dynamic variables

Receive command 3: FF FF FF FF FF 86 9A 1A AD 18 8C 03 1A 00 00 40 80 00 00 13 00 00 00 00 2B 48 33 5A 4B 26 00 00 00 00 20 00 00 00 00 B2

10.1.5 Command 6: Write polling address

Command format:

Only when the polling address of the instrument is 0, that the AO output of primary variable is available. If the address is 1~15, AO will be not activated and will not response, AO will be minimum value; transmission status will be the 3rd statue------primary variable AO fixed; max and min alarm not implemented. If polling address is write back to 0, AO will be activated again and will response.

Request:

Byte 0: Device polling address

Response:

Byte 0: Device polling address

Test of command:

Send command 6: FF FF FF FF FF 82 9A 1A AD 18 8C 06 01 00 3C ; to write POLLING ADDRESS

Receive command 6:FF FF FF FF FF 86 9A 1A AD 18 8C 06 03 00 00 00 3A

10.1.6 Command 11: Read unique identifier associated with tag

Command format:

Byte 0-5: Tag, Packed ASCI

Response:

Byte 0: Device type code for expansion

Byte 1: Manufacture Identification code

Byte 2: Manufacture device type

Byte 3: Number of request preambles

Byte 4: Revision level of universal command

Byte 5: Revision level of transmitter document

Byte 6: Software revision level

Byte 7: Hardware revision level

Byte 8: Flags, none defined at this time.

Byte 9-11: Device identification number

Test of command:

Send command 11: FF FF FF FF FF 82 9A 1A AD 18 8C 0B 00 30 ; Read relevant info of the device such as unique identifier associated with tag

Receive command 11: FF FF FF FF FF 86 9A 1A AD 18 8C 0B 0E 00 00 FE 1A 1A 05 05 00 00 00 00 AD 18 8C FD

10.1.7 Command 12: Read message

Command format:

To read message

Request: None

Response:

Byte 0-23: Message

Test of command:

Send command 12:FF FF FF FF FF 82 9A 1A AD 18 8C 0C 00 37 ; read message

Receive command 12:FF FF FF FF FF 86 9A 1A AD 18 8C 0C 1A 00 00 59 00 74 D6 05 8F 49 41 58 80 42 47 25 40 4C 81 04 8F 0C 54 D3 3D 28 20 10

10.1.8 Command 13: Read tag, descriptor, date

Command format:

Read device tag, description and date.

Request: None

Response:

Byte 0-5: Tag, ASCII

Byte 6-17: Descriptor, ASCII

Byte 18-20: Date: day, month, year

Test of command:

Send command 13:FF FF FF FF FF 82 9A 1A AD 18 8C 0D 00 36 ;read device tag, descriptor and date

Receive command 13:FF FF FF FF FF 86 9A 1A AD 18 8C 0D 17 00 00 50 11 E0 82 08 20 58 F4 94 15 88 06 30 F5 CD 15 41 52 0F 01 6F E2

10.1.9 Command 14: Read primary variable sensor information: device serial number and limits

Command format:

Read device information

Request: None

Response:

Byte 0-2: Sensor serial number MSB, 24-BIT unsigned integer

Byte 3: Flow rate unit

Byte 4-7: Upper sensor limit of flow rate

Byte 8-11: Lower sensor limit of flow rate

Byte 12-15: Minimum span of flow rate

Test of command:

Send command 14: FF FF FF FF FF 82 9A 1A AD 18 8C 0E 00 35; to read primary sensor serial number and limits.

Receive command 14: FF FF FF FF FF 86 9A 1A AD 18 8C 0E 12 00 00 00 00 00 13 43 96 00 00 00 00 00 00 38 D1 B7 17 AC

10.1.10 Command 15: Read primary variable output information

Command format:

Read Primary variable alarm select code, primary variable transfer code, primary variable range values units code, primary variable upper and lower range value, primary variable damping value, write protect code and private label distributor code VIII

Request: None

Response:

Byte0: Alarm select code

Byte1: Primary variable transfer function code

Byte2: Primary variable range values unit code

Byte3-6: Primary variable upper range value, IEEE754

Byte7-10: Primary variable lower range value, IEEE754

Byte11-14: Primary variable damping value, IEEE754,units of seconds

Byte15: Write protect code

Byte16: Private Label Distributor Code

Test of command:

Send command 15:FF FF FF FF FF 82 9A 1A AD 18 8C 0F 00 34; Read primary variable output information

Receive command 15:FF FF FF FF FF 86 9A 1A AD 18 8C 0F 13 00 00 00 00 13 43 96 00 00 00 00 00 00 42 20 00 00 FB 12 6E

10.1.11 Command 16: Read final assembly number

Command format:

Read final assembly number.

Request: None

Response:

Byte 0-2: Final assembly number

Test of command:

Send command 16:FF FF FF FF FF 82 9A 1A AD 18 8C 10 00 2B; Read final assembly number

Receive command 16: FF FF FF FF FF 86 9A 1A AD 18 8C 10 05 00 00 A8 36 81 35

10.1.12 Command 17: Write message

Command format:

Write message

Request:

Byte 0-23: Message

Response:

Byte 0-23: Message

Test of command:

Send command 17:FF FF FF FF FF 82 9A 1A AD 18 8C 11 18 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 32 ;message

Receive command 17:FF FF FF FF FF 86 9A 1A AD 18 8C 11 1A 00 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 34

10.1.13 Command 18: Write tag, descriptor, date

Command format:

Write tag, descriptor, date.

Request:

Byte 0-5: Tag, ASCII

Byte 6-17: Descriptor, ASCII

Byte 18-20: Date: day, month, year

Response:

Byte 0-5: Tag, ASCII

Byte 6-17: Descriptor, ASCII

Byte 18-20: Date: day, month, year

Test of command:

Send command 18: FF FF FF FF FF 82 9A 1A AD 18 8C 12 15 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3C

Receive command 18:FF FF FF FF FF FF 86 9A 1A AD 18 8C 12 17 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3A

10.1.14 Command 19: Write final assembly number

Command format:

Write final assembly number

Request:

Byte 0-2: Final assembly number

Response:

Byte 0-2: Final assembly number

Test of command:

Send command 19: FF FF FF FF FF 82 9A 1A AD 18 8C 13 03 01 02 03 2B ;

Receive command 19: FF FF FF FF FF 86 9A 1A AD 18 8C 13 05 00 00 01 02 03 29

10.1.15 Command 34: Write primary variable damping value

Command format:

Write primary variable damping value. If value is not acceptable, will revert with alarm.

Request:

Byte 0-3: Damping value, IEEE754

Response:

Byte 0-3: Actual damping value, IEEE754

Test of command:

Send command 34: FF FF FF FF FF 82 9A 1A AD 18 8C 22 04 40 00 00 00 5D; Write primary variable damping value

Receive command 34: FF FF FF FF FF 86 9A 1A AD 18 8C 22 06 00 00 40 00 00 00 5B

10.1.16 Command 35: Write primary variable range values

Command format:

The upper and lower limits of primary variable are independent. The primary variable range unit value that this command received has no effect on the primary variable unit value. The primary value range value will be returned in the unit received.

Most device allows that the measurement range upper limit lower than lower limit ,to support the device to reverse output.

Request:

Byte 0: Primary variable upper and lower range value unit code

Byte 1-4: Primary variable upper range limit, IEEE 754

Byte 5-8: Primary variable lower range limit, IEEE 754

Response:

Byte 0: Primary variable upper and lower range value unit code

Byte 1-4: Primary variable upper range limit, IEEE 754

Byte 5-8: Primary variable lower range limit, IEEE 754

Test of command:

Send command 35: FF FF FF FF FF 82 9A 1A AD 18 8C 23 09 13 40 00 00 00 40 00 00 00 02;

Write primary variable range values

Receive command 35: FF FF FF FF FF 86 9A 1A AD 18 8C 23 0B 00 00 13 00 00 00 00 00 00 00 00 04

10.1.17 Command 36: Write primary variable upper limit value

Command format:

Write the primary variable upper limit to current primary variable value. The change of primary

variable upper limit value has no effect on the primary variable lower limit.

Request:

NONE

Response:

NONE

Test of command:

Send command 36: FF FF FF FF FF 82 9A 1A AD 18 8C 24 00 1F; Write the primary variable upper limit to current primary variable value.

Receive command 36: FF FF FF FF FF 86 9A 1A AD 18 8C 24 02 00 00 19

10.1.18 Command 37: Write primary variable lower limit value

Command format:

Write the primary variable lower limit to current primary variable value. The change of primary variable lower limit value has no effect on the primary variable higher limit.

Request:

NONE

Response:

NONE

Test of command:

Send command 37: FF FF FF FF FF 82 9A 1A AD 18 8C 25 00 1E; Write the primary variable lower limit to current primary variable value.

Receive command 37: FF FF FF FF FF 86 9A 1A AD 18 8C 25 02 00 00 18

10.1.19 Command 40: Enter/Exit primary variable current mode

Command format:

Device is set to fixed primary variable current, when primary variable is 0, means to exit primary variable current mode.

Request:

Byte 0-3: Fixed primary variable current level IEEE 754, mA

Response:

Byte 0-3: Actual fixed primary variable current level IEEE 754, mA

Test of command:

Send command 40: FF FF FF FF FF 82 9A 1A AD 18 8C 28 04 40 80 00 00 D7

Receive command 40: FF FF FF FF FF 86 9A 1A AD 18 8C 28 06 00 00 40 80 00 00 D1

10.1.20 Command 45: Trim primary variable current DAC zero

Command format:

Trim the primary variable current AO zero, so the current current value is accurate set to its min value.

Before implementing this command, use command 40 to set current to accurate primary variable AO min value. If device is not under fixed primary variable current mode or current has not been set to accurate min value, need to return response code 9---not under correct current mode.

Request:

Byte 0-3: Externally measured primary variable current level IEEE754, units of mA

Response:

Byte 0-3: Actual measured primary variable current level IEE 754

Test of command:

Send command 45: FF FF FF FF FF 82 9A 1A AD 18 8C 2 D 04 40 80 00 00 D2

Receive command 45: FF FF FF FF FF 86 9A 1A AD 18 8C 2D 06 09 00 40 80 00 00 DD : response code is 09, device is not under correct current mode.

10.1.21 Command 46: Trim primary variable current DAC gain

Command format:

Trim primary variable AO gain, so the current current value is accurate set to its max value.

Before implementing this command, use command 40 to set current to accurate primary variable AO max value. If device is not under fixed primary variable current mode or current has not been set to accurate max value, need to return response code 9---not under correct current mode.

Request:

Byte 0-3: Externally measured primary variable current level IEEE754, units of mA

Response:

Byte 0-3: Actual measured primary variable current level IEE 754

Test of command:

Send command 46: FF FF FF FF FF 82 9A 1A AD 18 8C 2 E 04 40 80 00 00 D1

Receive command 46: FF FF FF FF FF 86 9A 1A AD 18 8C 2E 06 09 00 40 80 00 00 DE : response code is 09, device is not under correct current mode.

10.1.22 Command 140: Reset totalizer

Command format:

Reset totalizer

Request:

NONE

Response:

NONE

Test of command:

Send command 140: FF FF FF FF FF 82 9A 1A AD 18 8C 8C 00 B7 Reset totalizer

Receive command 140: FF FF FF FF FF 86 9A 1A AD 18 8C 8C 02 00 00 B1

11. Maintaining

11.1 How to reverse the transmitter front and back

1) The transmitter can be reversed to front and back.

2) Before reverse the transmitter, please take out the tightening screw under the transmitter.

3) Reverse the transmitter by 180 degrees, then screw and tighten the tightening screw.

Please reference to picture 11.1

SVF128-H35.png

Picture 11.1: Reverse the transmitter front and back

11.2 Replace a transmitter circuit boards

1) Please make sure the power is off before replacing the transmitter.

2) Remove the front cover.

3) Loose the 4 screws on the circuit boards, than can take the boards out a little.

4) Remove all the plugs on the circuit board. Then remove the circuit board away

5) Put the new circuit board in and put the plug on

6) Tighten the 4 screws on the board, tighten the front cover

Please reference to picture 11.2

SVF128-H36.png

Picture 11.2: Replace the transmitter

12. Troubleshooting and repair

12.1 Safety introduction

  • Please do not open the cover on the flame proof enclosure if in a explosive environment.
  • When trying to wire to HART or RS485 device, please make sure that the process of wiring the device into the loop complies with the intrinsic safety requirement. Or please process the wiring in a none-explosive environment.
  • Please make sure the environment the flowmeter in can meet the requirement of the certificate.
  • When power is wired, please make sure the front and rear cover is closed properly.

12.2 Troubleshooting and repair

Symptom

Reason

Trouble shooting

Repair

 

No display

 Power supply failure

Test the voltage on the power source with a universal meter

Re-wire the power or use a new power

 

 Power is not wired

Test the voltage on the power source with a universal meter

 Wire the power

 

 Cable if broken

Check if there is break off point on the cable

Check the cable and re-wire

 

 Wrong wiring

Check if wiring to the correct terminal

 Re-wire

 

 Displayed flow rate is 0 while there are flow in the pipe

 Flow rate is lower than the meter's lower limit

 Increase the flow rate to check

Increase the flow rate or replace a new proper flowmeter

 

The flow rate of small signal cut off function is too high

 Check the small signal cut off setting

 Set the small signal cut off to a proper value

 

 Energy threshold value is too high

 Check if the Energy threshold value is too high in spectrum analyzing checking mode

Set the Energy threshold value to a proper value (Please reference to Note 1 for how to set)

 

 Transmitter function failure

Replace the transmitter with another transmitter of same type to check

 Replace the transmitter

 Sensor is damaged

Increase the flow rate to check first, than install the transmitter to another flowmeter in same type to check.

 Replace the sensor

 Pipeline blocked or sensor jam.

If all above possibilities are eliminated, please check the pipe line and installation.

 Re-install the flowmeter

There is big difference between the flow reading and the process flow rate

 

No density compensation for steam measurement

 Check the density compensation devices and the setting

 Fix density compensation

 

The estimated flow rate before using the meter is wrong

 Use other flowmeter to confirm the actual flow rate

 

 

 Setting incorrect

 Check the settings of meter K factor,upper and lower limit of flow rate

 Set the meter correctly

 

Note 1: Enter code setting, set C49=12. Press “U-D button” to check the current energy of vortex flow signal and vibration signal. E1 is the energy of vortex flow signal, please set the energy threshold value lower than the displayed value. E.1 is the energy of vibration, please set the energy threshold value lower than the displayed value. Set above value in D017 (Energy threshold of vortex flow signal) and D018 (Energy threshold of vibration), than set C49 back to 00.

12.3 Self-diagnose function

VFM60 digital vortex flowmeter display can also indicate the self-diagnose code as below:

Error code

Problem

Repair

Err-003

Temperature sensor disconnected

Check Temperature sensor

Err-004

Pressure sensor disconnected

Check pressure sensor

Err-005

About to over total flow

This is a reminding message

Err-006

Display value over limit

The value is over the physical limit of the display

Err-011

Superheated steam temperature is over limit

Reduce the steam temperature

Err-012

Superheated steam pressure is over limit

Reduce the steam pressure

Err-013

Button is pressed and hold for too long time

Check the button circuit

Err-014

Reset code setting failed

Check EEPROM

Err-015

Reset digital setting failed

Check EEPROM

Err-016

Read total flow error

Check EEPROM

Err-017

 Temperature calibration setting is wrong

Check the record of temperature calibration

Err-018

pressure calibration setting is wrong

Check the record of pressure calibration

Err-020

Flow rate limit setting is incorrect

Check the flow rate limit setting

Err-021

Temperature limit setting is incorrect

Check the temperature limit setting

Err-022

Pressure limit setting is incorrect

Check the pressure limit setting

Err-023 

Communication connection error

Check the communication li

Err-024

Setting is incorrect when using aga_nx_19 to calculate the compressibility factor

Check if the setting for compressibility factor is correct

Err-025

 Frequency output for total flow is over limit

 Reset the total flow frequency output factor

Err-026

3V power source failure

Check the circuit board

Err-027

Frequency output incorrect

Check the range of frequency

Err-028

 The master is disconnected from the slave

Check the cable wiring between local and remote transmitter

13. Remark

No part of this publication may be copied or distributed, transmitted, transcribed, stored in a retrieval system, or translated into any human or computer language, in any form or by any means, electronic, mechanical, manual, or other wise, or disclosed to third parties without the express written permission of Comate Intelligent Sensor Technology. The information contained in this manual is subject to change without notice.

Appendix

Specification:

  • Accuracy

Variables

For gas and steam

Liquid

Flow rate (m3/h)

±1% RD( Re ≥ 20000 )

±0.75% RD( Re ≥ 20000 )

±2% RD

( 10000 < Re < 20000 )

±2% RD

(10000 < Re < 20000 )

Mass flow (kg/h)

±1.5% RD( Re ≥ 20000 )

±1.0% RD( Re  ≥ 20000 )

±2.5% RD

( 10000 < Re < 20000 )

±2.5% RD

( 10000 < Re < 20000 )

Temperature(℃)

(For multi-variable version)

±1℃

±1℃

Pressure (Mpa)

(For multi-variable version)

±0.75% FS

±0.75% FS

  • Repeatability

Flow rate

±0.3%

Mass flow

±0.3%

Temperature

±0.05 ℃
Pressure

±0.05% FS

  • Measurement range

Fluid type

Lower limit

Higher limit

Condition

Gas

6m/s,DN15、DN20

60m/s

T=25℃,

P=101.325Kpa

Air calibrated

4m/s,DN25、DN32

2m/s,DN40~DN300

Steam

6m/s,DN15、DN20

70m/s

T=25℃,

P=101.325Kpa

Air calibrated

4m/s,DN25、DN32

2m/s,DN40~DN300

Liquid

0.3m/s

7m/s

T=25℃,

P=101.325Kpa

Water calibrated

  • Temperature range

Low temperature version

−180℃~100℃

Normal temperature version

−40℃~150℃

Medium temperature version

−40℃~250℃

High temperature version

−40℃~350℃

  • Pressure range

Available pressure rating includes 1.6Mpa, 2.5Mpa, 4.0Mpa, 6.4Mpa. If the application requires a higher pressure rating , please contact us to check the possibility.

Size and dimension

Size and dimension for wafer type

SVF128-H37.png SVF128-H38.png
SVF128Wafer type 150 dgrC version SVF128 Wafer type 250/350 dgrC version

 Size

 K

(Pipe O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

Flange O/D

15

75

65

100

18

14

4

294

335

475

130

20

75

65

100

18

14

4

294

335

475

130

25

75

65

100

18

14

4

288.5

329.5

469.5

130

32

80

65

120

20

14

4

292.8

333.8

473.8

145

40

84

65

120

20

14

4

295.8

336.8

476.8

145

50

94

65

132

22

18

4

301

342

482

160

65

105

65

144

24

18

6

308.5

349.5

489.5

180

80

120

65

160

24

18

6

316

357

497

192

100

140

90

190

24

18

8

327

368

508

230

125

165

65

210

26

18

8

340.5

381.5

521.5

242

150

190

65

240

28

22

8

353

534

534

280

200

240

85

296

28

22

12

378

559

559

335

250

290

100

354

28

22

12

404

585

585

405

300

340

120

412

30

22

12

429

609

609

460

Remark: The flange O/D, screw holes distance, flange thickness, screw hole diameter and screw qty are for the counter flanges, unit in mm.

Counter flanges, screw and bolts, gaskets are usually along with package.

Size and dimension for flanged type

 

SVF128-H39.png

 

SVF128-H40.png

SVF128 Flanged type 150 dgrC version  SVF128 Flanged type 250/350 dgrC version

 Size

 K

(Flange

O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

15

90

180

60.3

11.6

15.9

4

294

335

475

20

100

180

69.9

13.2

15.9

4

294

335

475

25

110

180

79.4

14.7

15.9

4

293

334

474

32

117.3

180

88.9

16.3

15.9

4

300.5

341.5

481.5

40

127

180

98.4

17.9

15.9

4

302.5

343.5

483.5

50

152.4

180

120.7

19.5

19

4

307

348

488

65

180

200

139.7

22.7

19

4

314

355

495

80

190.5

200

152.4

24.3

19

4

326

367

507

100

230

200

190.5

24.3

19

8

336

377

517

125

255

220

215.9

24.3

22.2

8

345

386

526

150

280

220

241.3

25.9

22.2

8

360

541

541

200

345

220

298.5

29

22.2

8

385

586

586

250

405

250

362

30.6

25.4

12

412.7

593.7

593.7

300

485

300

431.8

32.2

25.4

12

445.4

626.4

626.4

Dimension of ANSI CL150 flanged version

 Size

 K

(Flange

O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

15

95.2

180

66.7

14.7

15.9

4

294

335

475

20

117.5

180

82.6

16.3

19

4

294

335

475

25

125

180

88.9

17.9

19

4

293

334

474

32

135

180

98.4

19.5

19

4

300.5

341.5

481.5

40

156

180

114.3

21.1

22.2

4

302.5

343.5

483.5

50

165.1

180

127

22.7

19

8

307

348

488

65

191

200

149.2

25.9

22.2

8

314

355

495

80

210

200

168.3

29

22.2

8

326

367

507

100

255

200

200

32.2

22.2

8

336

377

517

125

280

220

235

35.4

22.2

8

345

386

526

150

320

220

269.9

37

22.2

12

360

541

541

200

381

220

330.2

41.7

25.4

12

385

586

586

250

455

250

387.4

48.1

28.6

16

412.7

593.7

593.7

300

521

300

450.8

51.3

31.7

16

445.4

626.4

626.4

Dimension of ANSI CL300 flanged version

 Size

 K

(Flange

O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

15

95

180

65

14

14

4

294

335

475

20

105

180

75

16

14

4

294

335

475

25

115

180

85

16

14

4

293

334

474

32

140

180

100

18

18

4

300.5

341.5

481.5

40

150

180

110

18

18

4

302.5

343.5

483.5

50

165

180

125

20

18

4

307

348

488

65

185

200

145

20

18

8

314

355

495

80

200

200

160

20

18

8

326

367

507

100

220

200

180

22

18

8

336

377

517

125

250

220

210

22

18

8

345

386

526

150

285

220

240

24

22

8

360

541

541

200

340

220

295

26

22

12

385

586

586

250

405

250

355

29

26

12

412.7

593.7

593.7

300

460

300

410

32

26

12

445.4

626.4

626.4

Dimension of DIN PN16 flanged version

 Size

 K

(Flange

O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

15

95

180

65

14

14

4

294

335

475

20

105

180

75

16

14

4

294

335

475

25

115

180

85

16

14

4

293

334

474

32

140

180

100

18

18

4

300.5

341.5

481.5

40

150

180

110

18

18

4

302.5

343.5

483.5

50

165

180

125

20

18

4

307

348

488

65

185

200

145

22

18

8

314

355

495

80

200

200

160

24

18

8

326

367

507

100

235

200

190

26

22

8

336

377

517

125

270

220

220

28

26

8

345

386

526

150

300

220

250

30

26

8

360

541

541

200

360

220

310

32

26

12

385

586

586

250

425

250

370

35

30

12

412.7

593.7

593.7

300

485

300

430

38

30

16

445.4

626.4

626.4

Dimension of DIN PN25 flanged version

 Size

 K

(Flange

O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

15

95

180

65

14

14

4

294

335

475

20

105

180

75

16

14

4

294

335

475

25

115

180

85

16

14

4

293

334

474

32

140

180

100

18

18

4

300.5

341.5

481.5

40

150

180

110

18

18

4

302.5

343.5

483.5

50

165

180

125

20

18

4

307

348

488

65

185

200

145

22

18

8

314

355

495

80

200

200

160

24

18

8

326

367

507

100

235

200

190

26

22

8

336

377

517

125

270

220

220

28

26

8

345

386

526

150

300

220

250

30

26

8

360

541

541

200

375

220

320

36

30

12

385

586

586

250

450

250

385

42

33

12

412.7

593.7

593.7

300

515

300

450

52

33

16

445.4

626.4

626.4

Dimension of DIN PN40 flanged version

 Size

 K

(Flange

O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

15

95

180

70

12

15

4

294

335

475

20

100

180

75

14

15

4

294

335

475

25

125

180

90

14

19

4

293

334

474

32

135

180

100

16

19

4

300.5

341.5

481.5

40

140

180

105

16

19

4

302.5

343.5

483.5

50

155

180

120

16

19

4

307

348

488

65

175

200

140

18

19

4

314

355

495

80

185

200

150

18

19

8

326

367

507

100

210

200

175

18

19

8

336

377

517

125

250

220

210

20

23

8

345

386

526

150

280

220

240

22

23

8

360

541

541

200

330

220

290

22

23

12

385

586

586

250

400

250

355

24

25

12

412.7

593.7

593.7

300

445

300

400

24

25

16

445.4

626.4

626.4

Dimension of JIS 10K flanged version

 Size

 K

(Flange

O/D)

 L

(Pipe length)

W

(Flange screwhole

distance)

 C

(flange thickness)

 m

(screwhole diameter)

 n

(screw qty)

 H

(Meter height)

150dgrC

 H

(Meter height)

250dgrC

 H

(Meter height)

350dgrC

15

95

180

70

14

15

4

294

335

475

20

100

180

75

16

15

4

294

335

475

25

125

180

90

16

19

4

293

334

474

32

135

180

100

18

19

4

300.5

341.5

481.5

40

140

180

105

18

19

4

302.5

343.5

483.5

50

155

180

120

18

19

8

307

348

488

65

175

200

140

20

19

8

314

355

495

80

200

200

160

22

23

8

326

367

507

100

225

200

185

24

23

8

336

377

517

125

270

220

225

26

25

8

345

386

526

150

305

220

260

28

25

12

360

541

541

200

350

220

305

30

25

12

385

586

586

250

430

250

380

34

27

12

412.7

593.7

593.7

300

480

300

430

36

27

16

445.4

626.4

626.4

Dimension of JIS 20K flanged version

Remark: Flanged version do not contains screws and bolts in the package unless customer need to purchase from us. We also have flanged type in other standard and pressure rating. Please check with us if you require flanged version other than what we provided

Size and dimension for multi-variable wafer type

 

SVF128-H41.png

 

SVF128-H42.png

SVF128 Wafer type 150 dgrC version

SVF128 Wafer type 250/350 dgrC version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

75 65

100

18

14

4

86

20

75 65

100

18

14

4

83.5

25

75 65

100

18

14

4

86

32

80 65

120

20

14

4

87

40

84 65

120

20

14

4

89

50

94 65

132

22

18

4

89

65

105 65

144

24

18

6

91

80

120 65

160

24

18

6

111

100

140 90

190

24

18

8

90

125

165 65

210

26

18

8

86

150

190 65

240

28

22

8

86

200

240 85

296

28

22

12

106

250

290 100

354

28

22

12

106

300

340 120

412

30

22

12

106

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

228.5

177.5

329.5

228.5

469.5

368.5

292.8

181.8

333.8

232.8

473.8

372.8

295.8

184.8

336.8

235.8

476.8

375.8

310

190

342

241

482

381

308.5

197.5

349.5

248.5

489.5

388.5

316

247.5

357

298.5

497

438.5

327

221

368

272

508

412

340.5

239.5

381.5

290.5

521.5

430.5

353

267

534

458

534

458

378

317

559

508

559

508

404

368

585

559

585

559

429

418

609

609

609

609

Size and dimension for multi-variable flanged type

 

SVF128-H45.png

 

SVF128-H46.png

SVF128 Flanged type 150 dgrC version

SVF128 Flanged type 250/350 dgrC version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

95

180

65

14

14

4

76

20

105

180

75

16

14

4

68.5

25

115

180

85

16

14

4

66

32

140

180

100

18

18

4

57

40

150

180

110

18

18

4

56

50

165

180

125

20

18

4

53.5

65

185

200

145

20

18

8

51

80

200

200

160

20

18

8

51

100

220

200

180

22

18

8

50

125

250

220

210

22

18

8

43.5

150

285

220

240

24

22

8

38.5

200

340

220

295

26

22

12

56

250

405

250

355

29

26

12

48.5

300

460

300

410

32

26

12

46

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

293

186

334

237

474

377

300.5

193.5

341.5

244.5

481.5

384.5

302.5

195.5

343.5

246.5

483.5

386.5

307

200

348

251

488

391

314

207

355

258

495

398

326

219

367

270

507

410

336

234

377

285

517

425

345

248

386

299

526

439

360

278

541

469

541

469

385

328

566

519

566

519

412.7

380.7

593.7

571.7

593.7

571.7

445.4

438.4

626.4

629.4

626.4

629.4

Dimension of DIN PN16 flanged version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

95

180

65

14

14

4

76

20

105

180

75

16

14

4

68.5

25

115

180

85

16

14

4

66

32

140

180

100

18

18

4

57

40

150

180

110

18

18

4

56

50

165

180

125

20

18

4

53.5

65

185

200

145

22

18

8

51

80

200

200

160

24

18

8

51

100

235

200

190

26

22

8

32.5

125

270

220

220

28

26

8

33.5

150

300

220

250

30

26

8

31

200

360

220

310

32

26

12

46

250

425

250

370

35

30

12

38.5

300

485

300

430

38

30

16

33.5

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

293

186

334

237

474

377

300.5

193.5

341.5

244.5

481.5

384.5

302.5

195.5

343.5

246.5

483.5

386.5

307

200

348

251

488

391

314

207

355

258

495

398

326

219

367

270

507

410

336

234

377

285

517

425

345

248

386

299

526

439

360

278

541

469

541

469

385

328

566

519

566

519

412.7

380.7

593.7

571.7

593.7

571.7

445.4

438.4

626.4

629.4

626.4

629.4

Dimension of DIN PN25 flanged version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

95

180

65

14

14

4

76

20

105

180

75

16

14

4

68.5

25

115

180

85

16

14

4

66

32

140

180

100

18

18

4

57

40

150

180

110

18

18

4

56

50

165

180

125

20

18

4

53.5

65

185

200

145

22

18

8

51

80

200

200

160

24

18

8

51

100

235

200

190

26

22

8

32.5

125

270

220

220

28

26

8

33.5

150

300

220

250

30

26

8

31

200

375

220

320

36

30

12

39.5

250

450

250

385

42

33

12

36

300

515

300

430

52

33

16

18.5

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

293

186

334

237

474

377

300.5

193.5

341.5

244.5

481.5

384.5

302.5

195.5

343.5

246.5

483.5

386.5

307

200

348

251

488

391

314

207

355

258

495

398

326

219

367

270

507

410

336

234

377

285

517

425

345

248

386

299

526

439

360

278

541

469

541

469

385

328

566

519

566

519

412.7

380.7

593.7

571.7

593.7

571.7

445.4

438.4

626.4

629.4

626.4

629.4

Dimension of DIN PN40 flanged version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

90

180

60.3

11.6

15.9

4

73.5

20

100

180

69.9

13.2

15.9

4

66

25

110

180

79.4

14.7

15.9

4

63.5

32

117.3

180

88.9

16.3

15.9

4

68

40

127

180

98.4

17.9

15.9

4

67.5

50

152.4

180

120.7

19.5

19

4

61

65

180

200

139.7

22.7

19

4

48.5

80

190.5

200

152.4

24.3

19

4

46

100

230

200

190.5

24.3

19

8

40

125

255

220

215.9

24.3

22.2

8

41

150

280

220

241.3

25.9

22.2

8

36

200

345

220

298.5

29

22.2

8

53.5

250

406.4

250

362

30.6

25.4

12

48

300

485

300

431.8

32.2

25.4

12

39.5

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

293

186

334

237

474

377

300.5

193.5

341.5

244.5

481.5

384.5

302.5

195.5

343.5

246.5

483.5

386.5

307

200

348

251

488

391

314

207

355

258

495

398

326

219

367

270

507

410

336

234

377

285

517

425

345

248

386

299

526

439

360

278

541

469

541

469

385

328

566

519

566

519

412.7

380.7

593.7

571.7

593.7

571.7

445.4

438.4

626.4

629.4

626.4

629.4

Dimension of ANSI CL150 flanged version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

95.2

180

66.7

14.7

15.9

4

71

20

117.5

180

82.6

16.3

19

4

57.2

25

125

180

88.9

17.9

19

4

51

32

135

180

98.4

19.5

19

4

59

40

156

180

114.3

21.1

22.2

4

53

50

165.1

180

127

22.7

19

8

54.7

65

191

200

149.2

25.9

22.2

8

43

80

210

200

168.3

29

22.2

8

36.3

100

255

200

200

32.2

22.2

8

28.5

125

280

220

235

35.4

22.2

8

28.5

150

320

220

269.9

37

22.2

12

16

200

381

222

330.2

41.7

25.4

12

35.5

250

445

250

387.3

48.1

28.6

16

28.7

300

521

300

450.8

51.3

31.7

16

21.5

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

293

186

334

237

474

377

300.5

193.5

341.5

244.5

481.5

384.5

302.5

195.5

343.5

246.5

483.5

386.5

307

200

348

251

488

391

314

207

355

258

495

398

326

219

367

270

507

410

336

234

377

285

517

425

345

248

386

299

526

439

360

278

541

469

541

469

385

328

566

519

566

519

412.7

380.7

593.7

571.7

593.7

571.7

445.4

438.4

626.4

629.4

626.4

629.4

Dimension of ANSI CL300 flanged version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

95

180

70

12

15

4

76

20

100

180

75

14

15

4

66

25

125

180

90

14

19

4

61

32

135

180

100

16

19

4

54.5

40

140

180

105

16

19

4

56

50

155

180

120

16

19

4

56

65

175

200

140

18

19

4

56

80

185

200

150

18

19

8

42.5

100

210

200

175

18

19

8

55

125

250

220

210

20

23

8

43.5

150

280

220

240

22

23

8

41

200

330

220

290

22

23

12

61

250

400

250

355

24

25

12

51

300

445

300

400

24

25

16

53.5

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

293

186

334

237

474

377

300.5

193.5

341.5

244.5

481.5

384.5

302.5

195.5

343.5

246.5

483.5

386.5

307

200

348

251

488

391

314

207

355

258

495

398

326

219

367

270

507

410

336

234

377

285

517

425

345

248

386

299

526

439

360

278

541

469

541

469

385

328

566

519

566

519

412.7

380.7

593.7

571.7

593.7

571.7

445.4

438.4

626.4

629.4

626.4

629.4

Dimension of JIS 10K flanged version

Size

K

(Flange O/D)

L

(Pipe length)

W

(Flange screwhole distance)

C

(flange thickness)

m

(screwhole diameter)

n

(screw qty)

L1

(Condensation pipe length)

15

95

180

70

14

15

4

76

20

100

180

75

16

15

4

66

25

125

180

90

16

19

4

61

32

135

180

100

18

19

4

54.5

40

140

180

105

18

19

4

56

50

155

180

120

18

19

8

56

65

175

200

140

20

19

8

56

80

200

200

160

22

23

8

35

100

225

200

185

24

23

8

47.5

125

270

220

225

26

25

8

33.5

150

305

220

260

28

25

12

28.5

200

350

220

305

30

25

12

51

250

430

250

380

34

27

12

36

300

480

300

430

36

27

16

36

H

(Meter height)

150dgrC

H1

(Condensation pipe height  150 dgrC)

H

(Meter height)

250dgrC

H1

(Condensation pipe height 250 dgrC)

H

(Meter height)

350dgrC

H1

(Condensation pipe height 350 dgrC)

294

183

335

234

475

374

294

183

335

234

475

374

293

186

334

237

474

377

300.5

193.5

341.5

244.5

481.5

384.5

302.5

195.5

343.5

246.5

483.5

386.5

307

200

348

251

488

391

314

207

355

258

495

398

326

219

367

270

507

410

336

234

377

285

517

425

345

248

386

299

526

439

360

278

541

469

541

469

385

328

566

519

566

519

412.7

380.7

593.7

571.7

593.7

571.7

445.4

438.4

626.4

629.4

626.4

629.4

Dimension of JIS 20K flanged version

Size and dimension for insertion type

 

 

 

SVF128-H43.png

 

 

 

Size

H (High)

300

580

350

605

400

630

500

680

600

730

700

780

800

830

900

880

1000

930

Size and dimension for remote converter

SVF128-H44.png

14. Support Contact

Manufacturer

logo-01.png

Daviteq Technologies Inc
No.11 Street 2G, Nam Hung Vuong Res., An Lac Ward, Binh Tan Dist., Ho Chi Minh City, Vietnam.
Tel: +84-28-6268.2523/4 (ext.122)

Email: info@daviteq.com | www.daviteq.com

 

Distributor in Australia and New Zealand

temploggerlogo.png

Templogger Pty Ltd

Tel: 1800 LOGGER

Email: contact@templogger.net